Abstract

Chronic arginine intake is believed to have favorable effects on the body. However, it might be hypothesized that excessive consumption of an individual amino acid exerts adverse effects on distribution and metabolism of other amino acids. We evaluated the effect of chronic intake of arginine on amino acid concentrations in blood plasma, liver, kidneys, and soleus and extensor digitorum longus muscles. Rats were fed a standard diet or a high-arginine diet (HAD) for two months. Half of the animals in each group were sacrificed in the fed state, and the other half after fasting overnight. HAD increased blood plasma concentrations of urea, creatinine, arginine, and ornithine and decreased most other amino acids. Arginine and ornithine also increased in muscles and kidneys; an increase of lysine was observed in both muscle types. Methionine, phenylalanine, threonine, asparagine, glycine, serine, and taurine decreased in most tissues of HAD fed animals. Most of the effects of HAD disappeared after overnight fasting. It is concluded that (i) enhanced dietary arginine intake alters distribution of almost all amino acids; and (ii) to attain a better assessment of the effects of various nutritional interventions, an appropriate number of biochemical measurements must be performed in both postprandial and postabsorptive states.

Highlights

  • L-Arginine is a basic amino acid that is required for synthesis of proteins and serves as a precursor for synthesis of creatine, agmatine, urea, polyamines, proline, glutamate, and nitric oxide (Figure 1)

  • The effect was more pronounced in a fed state than after overnight starvation (Tables 1 and 2)

  • We conclude that enhanced dietary arginine intake has a significant effect upon the tissue distribution of all amino acids

Read more

Summary

Introduction

L-Arginine is a basic amino acid that is required for synthesis of proteins and serves as a precursor for synthesis of creatine, agmatine, urea, polyamines, proline, glutamate, and nitric oxide (Figure 1).L -arginine is classified as a conditionally essential amino acid because its endogenous synthesis may not be sufficient to meet metabolic demands in preterm infants and some cases of critical illness [1].Current interest in L-arginine is focused mainly on its role in biosynthesis of nitric oxide and its stimulatory role in the secretion of insulin and growth hormone. L-Arginine is a basic amino acid that is required for synthesis of proteins and serves as a precursor for synthesis of creatine, agmatine, urea, polyamines, proline, glutamate, and nitric oxide (Figure 1). L -arginine is classified as a conditionally essential amino acid because its endogenous synthesis may not be sufficient to meet metabolic demands in preterm infants and some cases of critical illness [1]. Considerable literature exists from human and animal studies attesting to the fact that L-arginine may lower blood pressure, reduce blood clots and strokes, lower cholesterol and triglycerides, and improve diabetes and sexual functions via its role as a precursor for endothelium-derived nitric oxide [1,2,3]. There is no standard dose of arginine. A common dosage is 2 to 3 g three times a day; lower and higher doses have been reported [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.