Abstract

Previously, we showed that the antimicrobial cationic and amphipathic octadecapeptide AmyI-1-18 from rice α-amylase (AmyI-1) inhibited the endotoxic activity of lipopolysaccharide (LPS) from Escherichia coli. In addition, we demonstrated that several AmyI-1-18 analogs containing arginine or leucine substitutions, which were designed on the basis of the helical wheel projection of AmyI-1-18, exhibited higher antimicrobial activity against human pathogenic microorganisms than AmyI-1-18. In the present study, anti-inflammatory (anti-endotoxic) activities of five AmyI-1-18 analogs containing arginine or leucine substitutions were investigated. Two single arginine-substituted and two single leucine-substituted AmyI-1-18 analogs inhibited the production of LPS-induced nitric oxide in mouse macrophages (RAW264) more effectively than AmyI-1-18. These data indicate that enhanced cationic and hydrophobic properties of AmyI-1-18 are associated with improved anti-endotoxic activity. In subsequent chromogenic Limulus amebocyte lysate assays, 50% inhibitory concentrations (IC50 ) of the three AmyI-1-18 analogs (G12R, D15R, and E9L) were 0.11-0.13μm, indicating higher anti-endotoxic activity than that of AmyI-1-18 (IC50, 0.22μm), and specific LPS binding activity. In agreement, surface plasmon resonance analyses confirmed direct LPS binding of three AmyI-1-18 analogs. In addition, AmyI-1-18 analogs exhibited little or no cytotoxic activity against RAW264 cells, indicating that enhancements of anti-inflammatory and LPS-neutralizing activities following replacement of arginine or leucine did not result in significant increases in cytotoxicity. This study shows that the arginine-substituted and leucine-substituted AmyI-1-18 analogs with improved anti-endotoxic and antimicrobial activities have clinical potential as dual-function host defense agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.