Abstract

Round enamel and dentin surfaces of sound and carious extracted human teeth were irradiated by an ArF:excimer laser for up to 180 sec. Thermographic measurements indicated that the temperature rise due to heat accumulation caused by laser irradiation on these enamel and dentin surfaces was up to 19 degrees C (10 HZ with 540 J/cm2), and the temperature returned to the preirradiation value within 10 sec after the irradiation was stopped. Under light microscopy, no carbonization was evident on these surfaces, and a simple recess was formed by abrasion or vaporization in the irradiated regions. In the secondary SEM, uniformly distributed fine pores and prism structures appeared slightly on the enamel surfaces. Between the peritubular and the intertubular dentin, there appeared a distinct difference in the dissolved area. The laser almost completely removed carious regions of the enamel and the dentin, and penetration extended beyond the carious regions. In the backscattered electron SEM, highly mineralized layers were observed on the enamel and dentin surfaces dissolved by the laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.