Abstract

ABSTRACTA potculture study was conducted in soils collected from long-term fertilizer experiment (LTFE) being kept up as far the past 40 years to determine whether arbuscular mycorrhizal fungus (AMF) Rhizoglomus intraradices colonization changes the active and passive pools of carbon in a maize (Zea mays) – finger millet (Eleusine crocana)- cowpea (Vigna sinensis) cropping sequence in the Experimental Farm of the Tamil Nadu Agricultural University, Coimbatore, India. Soil samples were processed, sterilized and maize plants were grown in various fertility gradients in the absence (M-) or presence (M+) of AMF (Rhizoglomus intraradices) inoculation. The data have clearly shown that M+ soils had consistently higher active pools such as water soluble carbon, hot water soluble carbon and biomass carbon (M- 189; M + 305 mg kg−1), and passive pools such as soil organic carbon (M- 4.17; M + 4.31 mg g−1) and total glomalin. Among the fertility gradients, 100% NPK + Farm Yard Manure (FYM) with or without mycorrhizal fungal inoculation registered higher values for both active and passive pools of C but the response was more pronounced in the presence AMF inoculation. Overall, the data suggest that mycorrhizal fungal inoculation assists in effective carbon sequestration in an intensive cereal-legume cropping system.Abbreviations: AMF: Arbuscular mycorrhizal fungi; DAS: Days After Sowing; LTFE: Long-Term Fertilizer Experiment; WSC: Water soluble organic carbon; HA: Humic acid; FA: Fulvic acid; HWSC: Hot water soluble carbon

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call