Abstract

Casuarina glauca is an important coastal protection forest species, which is exposed to high salt stress all year round. Arbuscular mycorrhizal fungi (AMF) can promote the growth and salt tolerance of C. glauca under salt stress. However, the effects of AMF on the distribution of Na+ and Cl- and the expression of related genes in C. glauca under salt stress need to be further explored. This study explored the effects of Rhizophagus irregularis on plant biomass, the distribution of Na+ and Cl-, and the expression of related genes in C. glauca under NaCl stress through pot simulation experiments. The results revealed that the mechanisms of Na+ and Cl- transport of C. glauca under NaCl stress were different. C. glauca took a salt accumulation approach to Na+, transferring Na+ from roots to shoots. Salt accumulation of Na+ promoted by AMF was associated with CgNHX7. The transport mechanism of C. glauca to Cl- might involve salt exclusion rather than salt accumulation, and Cl- was no longer transferred to shoots in large quantities but started to accumulate in roots. However, AMF alleviated Na+ and Cl- stress by similar mechanisms. AMF could promote salt dilution of C. glauca by increasing biomass and the content of K+, compartmentalizing Na+ and Cl- in vacuoles. These processes were associated with the expression of CgNHX1, CgNHX2-1, CgCLCD, CgCLCF, and CgCLCG. Our study will provide a theoretical basis for the application of AMF to improve salt tolerance in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.