Abstract

Arachidonic acid (AA) is a polyunsaturated 20-carbon fatty acid present in phospholipids in the plasma membrane. The three primary pathways by which AA is metabolized are mediated by cyclooxygenase (COX) enzymes, lipoxygenase (LOX) enzymes, and cytochrome P450 (CYP) enzymes. These three pathways produce eicosanoids, lipid signaling molecules that play roles in biological processes such as inflammation, pain, and immune function. Eicosanoids have been demonstrated to play a role in inflammatory, renal, and cardiovascular diseases as well type 1 and type 2 diabetes. Alterations in AA release or AA concentrations have been shown to affect insulin secretion from the pancreatic beta cell, leading to interest in the role of AA and its metabolites in the regulation of beta-cell function and maintenance of beta-cell mass. In this review, we discuss the metabolism of AA by COX, LOX, and CYP, the roles of these enzymes and their metabolites in beta-cell mass and function, and the possibility of targeting these pathways as novel therapies for treating diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call