Abstract

A laboratory-silo study was conducted to evaluate the fermentation quality, feed-nutritive value and aerobic stability of sweet sorghum silage with or without oil-extracted microalgae supplementation. Sweet sorghum was mixed with four microalgae levels (0%, 1%, 2% and 3% on a dry matter basis; control, M1, M2 and M3, respectively) and ensiled for 45 d. Further, the four experimental silages were subjected to an aerobic stability test lasting 7 d. All the silages except M3 silage had good fermentative characteristics with low pH and ammonia nitrogen concentrations, and high lactic acid concentrations and favorable microbial parameters. Meanwhile, oil-extracted microalgae supplementation improved the feed-nutritional value of sweet sorghum silage. Fibre (neutral detergent fibre, acid detergent fibre, acid detergent lignin and cellulose) concentrations decreased, while dry matter and crude protein levels markedly increased (P<0.05). Compared with the control (69.7 h), treatments M2 and M3 improved the aerobic stability of sweet sorghum silage by 43.8% and more than 143% respectively, and decreased the clostridia spore counts during the stage of air exposure. Sweet sorghum silage produced with 2% oil-extracted microalgae addition was the most suitable for animal use due to the optimal balance of fermentation quality, feed-nutritional value and aerobic stability, which merits further in vivo studies using grazing ruminants. © 2018 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call