Abstract

Attempts have been made to develop new types of seismic devices using shape memory alloys. They are a single-stage bellows which are processed from thin-walled tubes by employing the rubber bulge method and then are annealed at 400°C for the shape-memory treatment. As strain distribution is induced on the bulged part due to the process, it is significant to know the effects of pre-strain and the subsequent heat-treatment on the mechanical properties of the material for tube when designing the bellows shapes for the seismic structures. Thus, tensile tests and thermal analysis were conducted before and after the heat treatment on rectangular specimens cut from the tubes. In this paper, the oxidization method was first attempted to observe distinctively both regions of the stress induced martensite (SIM) transformation and twin deformation generated while applying strain to the specimens. It became clear that the micro-structure in the SIM area had a changed R phase from the austenite phase at room temperature after being annealed at 400°C. From the experimental and analytical results for the specimens, the mechanical behavior was classified broadly into two conditions as follows: (1) the mechanical behavior can be formulated on the basis of a series-model consisting of areas of both R phase and austenite considering the area-ratio of these phases until the SIM transformation has expanded over the whole specimen, and (2) after that, the mechanical behavior can be formulated using the exponential function for the applied strain as a parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.