Abstract
Offshore structures that are made of austenitic stainless steels are exposed to a severe corrosion environment, with fracturing of the passive film occurring by chloride ion intrusion, stress from dynamic external forces and fatigue due to wave and tidal forces.In this paper, we report our evaluation of the durability of STS 316L with respect to stress corrosion cracking and hydrogen embrittlement in natural seawater, which was carried out via electrochemical methods and slow strain rate tests (SSRTs). The effect of hydrogen on the material was assessed using a SSRT with an applied potential of −0.95 V (versus Ag/AgCl). In addition, potentials below an applied potential of −1.2 V indicate samples that are affected by atomic and molecular hydrogen. Theoretically, the optimum corrosion protection range possible without stress corrosion cracking and hydrogen embrittlement occurring is thought to be between−0.56 and −0.9 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.