Abstract

To study the exogenous salicylic acid (SA) to alleviate the cadmium (Cd) toxicity in ryegrass (Lolium perenne L.), ryegrass plants subjected to 100 μM CdCl2 exposure were treated with different concentrations of SA, and Cd toxicity was evaluated by the decreases in plant growth and chlorophyll content. In Cd-treated plants, the activities of antioxidant enzymes, such as superoxide dismutase, peroxidase and catalase, decreased dramatically in both shoots and roots, whereas the accumulation of superoxide anion (O 2 ·- ), hydrogen peroxide (H2O2) and malondialdehyde (MDA) increased significantly. Excess Cd also decreased soluble protein and ascorbic acid (AsA) contents, increased accumulation of Cd in both shoots and roots; furthermore, the absorption of micronutrients was inhibited. Addition of 200 μM SA had the most significant alleviating effect against Cd toxicity while the addition of 400 μM SA had no significant effect with Cd treatment. Addition of 100, 200, 300 μM SA considerably increased chlorophyll content and the activities of antioxidant enzymes, increased the uptake and translocation of mineral elements, and decreased H2O2 and MDA accumulation in both shoots and roots of Cd-stressed plants. Addition of 200 μM SA not only decreased the Cd uptake in ryegrass, but also decreased the root-to-shoot translocation of Cd and changed its subcellular distribution in plants. Addition of 200 μM SA increased Cd concentrations in soluble fraction and cell wall in both shoots and roots markedly, with the majority of Cd associated with the cell wall and the soluble fraction and a minor part of Cd present in the cell organelle. Based on these results, we conclude that the optimal concentrations of exogenous SA could alleviate Cd-induced stress and promote ryegrass plant growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.