Abstract

With the continuous advancement of optical imaging technology and the increasing requirement for remote sensing applications, high-resolution spatial imaging technology has been extensively researched. Subject to the diffraction limitation, the optical aperture is continuously increasing to obtain more target details, which leads to larger satellite platforms and higher manufacturing costs. In order to balance the cost of satellite platforms and the imaging quality of space cameras, this paper focuses on the optical aperture, which affects both of the above by conducting an end-to-end analysis of the space imaging process to examine its effects on overall imaging spatial quality. This paper formulates the optical aperture optimization problem by establishing the evaluation functions for deployment cost and imaging quality. Two types of optical systems commonly used in space imaging, the coaxial reflective optical system with annular aperture and the topologically compact optical system with square aperture are studied based on the proposed optimization model. Their imaging characteristics and design principles are summarized. The optimization model proposed can be applied to the optical aperture design of any manufacturable optical system to guide the design of the entire space camera and even the satellite platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.