Abstract
Previous studies have reported effects of antipsychotic treatment and illness duration on brain features. This study used a machine learning approach to examine whether these factors in aggregate impacted the utility of MRI features for differentiating individual schizophrenia patients from healthy controls. This case-control study used patients with never-treated first-episode schizophrenia (FES, n = 179) and long-term ill schizophrenia (LTSZ, n = 30), with follow-up of the FES group after treatment (n = 71), a group of patients who had received long-term antipsychotic treatment (n = 93) and age and sex-matched healthy controls (n = 373) for each patient group. A multiple kernel learning classifier combining both structural and functional brain features was used to discriminate individual patients from controls. MRI features differentiated untreated FES (0.73) and LTSZ (0.83) patients from healthy controls with moderate accuracy, but accuracy was significantly higher in antipsychotic-treated FES (0.94) and LTSZ (0.98) patients. Treatment was associated with significantly increased accuracy of case identification in both early course and long-term ill patients (both p < .001). Effects of illness duration, examined separately in treated and untreated patients, were less robust. Our results demonstrate that initiation of antipsychotic treatment alters brain features in ways that further distinguish individual schizophrenia patients from healthy individuals, and have a modest effect of illness duration. Intrinsic illness-related brain alterations in untreated patients, regardless of illness duration, are not sufficiently robust for accurate identification of schizophrenia patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.