Abstract

The present study aimed at elucidating the role of antioxidants and stress metabolites in antimony (Sb) tolerance in a metallicolous (M), Sb[V]-hypertolerant population, and a non-metallicolous (NM) population of Salvia spinosa, particularly with regard to the question of whether they could be involved in constitutive Sb tolerance or, specifically, in Sb[V] hypertolerance in the M population. Plants were exposed in hydroponics to 0, 8, 24, 74, 221 μM Sb (Ш or V). Superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) activities, and the concentrations of phenolics, flavonoids, and proline in leaves were measured after 20 d. As potential stress/tolerance markers, the concentrations of chlorophyll a and b, anthocyanins, and those of total soluble and reducing sugars were also measured. Chlorophyll a concentration reflected the difference, both in Sb[III] and Sb[V] tolerance, between N and NM, and the higher toxicity of Sb[III], compared to Sb[V]. APX and proline accumulation were more induced in M than in NM, and more by Sb[V] than by Sb[III], which is theoretically compatible with a role in Sb[V] hypertolerance. CAT was more induced in M than in NM, but more by Sb[III] than Sb[V], suggesting that is not functional in Sb[V] hypertolerance. The other enzymes and compounds did not exhibit significant Sb redox status*population interactions, suggesting that they don't play a role in, specifically, Sb[V] hypertolerance in M, but at most in the constitutive Sb[III] or Sb[V] tolerance of the species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call