Abstract

Antigen-Expressing Immunostimulatory Liposomes (AnExILs) represent a novel DNA vaccination platform based on the production of protein antigens from DNA templates inside liposomes mediated by an in vitro transcription and translation (IVTT) mix. The aim of this study was to analyze the effects of AnExILs on different dendritic cells (DCs) models and to better understand the role of the different components of this formulation on its adjuvanticity. The effect of β-galactosidase-expressing AnExILs on maturation and particle uptake by murine DC cell line, fresh human monocyte-derived DCs or human dermal DCs in skin explants was investigated and compared to the effects of either plain liposomes or IVTT mix alone. AnExILs induced efficient DC chemotaxis and promoted up-regulation of maturation markers on murine DCs, due to the presence of IVTT in the formulation. Furthermore, the amount of active βGal associated with DCs was higher for AnExILs than for free βGal expressed in IVTT or βGal encapsulated into non-adjuvanted liposomes. Most interestingly, the same trend was observed with human DCs. Both IVTT mix and liposomal vehicles were shown to be key components of the AnExIL formulation responsible for its adjuvanticity. AnExILs combine antigen production, adjuvanticity and delivery in one system, and can efficiently activate both murine and human DCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.