Abstract

We identified controlling factors of the inter-annual variations of surface PM2.5–aerosol optical depth (AOD) relationship in China from 2006 to 2017 using a nested 3D chemical transport model—GEOS-Chem. We separated the contributions from anthropogenic emission control and meteorological changes by fixing meteorology at the 2009 level and fixing anthropogenic emissions at the 2006 level, respectively. Both observations and model show significant downward trends of PM2.5/AOD ratio (η, p < 0.01) in the North China Plain (NCP), the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) in 2006–2017. The model suggests that the downward trends are mainly attributed to anthropogenic emission control. PM2.5 concentration reduces faster at the surface than aloft due to the closeness of surface PM2.5 to emission sources. The Pearson correlation coefficient of surface PM2.5 and AOD (rPM-AOD) shows strong inter-annual variations (±27%) but no statistically significant trends in the three regions. The inter-annual variations of rPM-AOD are mainly determined by meteorology changes. Except for the well-known effects from relative humidity, planetary boundary layer height and wind speed, we find that temperature, tropopause pressure, surface pressure and atmospheric instability are also important meteorological elements that have a strong correlation with inter-annual variations of rPM-AOD in different seasons. This study suggests that as the PM2.5–AOD relationship weakens with reduction of anthropogenic emissions, validity of future retrieval of surface PM2.5 using satellite AOD should be carefully evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.