Abstract

The concentrations of trace elements in agricultural soils directly affect the ecological security and quality of agricultural products. A comprehensive study aimed at quantitatively analyze the effects of anthropogenic and natural environmental factors on the spatial distribution of heavy metals (HMs) and selenium (Se) in agricultural soils in a typical grain producing area of China. Factors considered in this study were parent rock, soil physicochemical properties, topography, precipitation, mine activity, and vegetation. Results showed that the median values of Zn, Cd, Cr, and Cu of 111 topsoil samples exceeded the background values of Guangxi province but were lower than the relevant national soil quality standards, and 85% of soil samples were classified as having rich Se levels (0.40 −3.0 mg kg−1). The potential ecological risk index of soil heavy metals as a whole was low, with Cd in 9% of the samples posing moderate ecological risk. The concentrations of heavy metals and Se were relatively high in soils from shale rock. Soil properties, mainly Fe2O3 and Mn played a dominant role on soil HMs and Se concentrations. Based on GeoDetector, we found that the interaction effects of two factors on the spatial differentiation of soil HMs and Se were greater than their sum effect. Among the factors, Mn enhanced the explanatory power of the model the most when interacting with other factors for soil Zn; the greatest interactive effect was between distance from mining area and Mn for Cd (q = 0.70); Fe2O3 significantly promoted the spatial differentiation of soil Cr, Cu and Se when interacting with other factors (q > 0.50). These findings contribute to a better understanding of the factors that drive the distribution of HMs and Se in agricultural soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.