Abstract

BackgroundAnteriorly-loaded walking is common in many occupations and may increase fall risk. Dynamic gait stability, defined by the Feasible Stability Region (FSR) theory, quantifies the kinematic relationship between the body’s center of mass (COM) and base of support (BOS). FSR-based dynamic gait stability has been used to evaluate the fall risk. Research questionHow does front load carriage affect dynamic gait stability, step length, and trunk angle among young adults during treadmill walking? MethodsIn this between-subject design study, 30 healthy young adults were evenly randomized into three load groups (0%, 10%, or 20% of body weight). Participants carried their assigned load while walking on a treadmill at a speed of 1.2 m/s. Body kinematics were collected during treadmill walking. Dynamic gait stability (the primary variable) was calculated for two gait events: touchdown and liftoff. Step length and trunk angle were measured as secondary variables. One-way analysis of variance was conducted to detect any group-related differences for all variables. Post-hoc analysis with Bonferroni correction was performed when main group differences were found. ResultsNo significant differences but medium to large effect sizes were found between groups for dynamic gait stability at touchdown (p = 0.194, η2 = 0.114) and liftoff (p = 0.122, η2 = 0.139). Trunk angle significantly increased (indicating backward lean) with the front load at touchdown (p < 0.001, η2 = 0.648) and liftoff (p < 0.001, η2 = 0.543). No significant between-group difference was found related to the step length (p = 0.344, η2 = 0.076). SignificanceCarrying a front load during walking significantly alters the trunk orientation and may change the COM-BOS kinematic relationship and, therefore, fall risk. The findings could inform the design of future studies focusing on the impact of anterior load carriage on fall risk during different locomotion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call