Abstract

Background: A certain percentage of patients undergoing anterior cruciate ligament (ACL) reconstruction will experience graft failure, and there is mounting evidence that an increased posterior tibial slope (PTS) may be a predisposing factor. Theoretically, under tibiofemoral compression force (TFC), a reduced PTS would induce less anterior tibial translation (ATT) and lower ACL force. Hypothesis: Ten-degree anterior closing wedge osteotomy of the proximal tibia will significantly reduce ACL force and alter knee kinematics during robotic testing. Study Design: Controlled laboratory study. Methods: Eleven fresh-frozen human knees were instrumented with a load cell that measured ACL force as the knee was flexing continuously from 0° to 50° under 200-N TFC as our initial testing condition, followed by the addition of the following tibial loads: 45-N anterior force (AF), 5-N·m valgus moment (VM), 2-N·m internal torque (IT), and all loads combined. ACL force and knee kinematics were recorded before and after osteotomy. Results: Osteotomy produced significant changes in the tibiofemoral position at full extension (as defined by a 2-N·m knee extension moment). This resulted in apparent knee hyperextension (9.4° ± 1.9°), posterior tibial translation (7.9 mm ± 1.6 mm), internal tibial rotation (3.2° ± 2.3°), and valgus tibial rotation (3.2° ± 1.5°). During straight knee flexion with TFC alone, osteotomy reduced ACL force to 0 N beyond 5° of flexion, and ATT was reduced between 0° and 45° (P < .05). With TFC + AF, ACL force was reduced beyond 5° of flexion, and ATT was reduced between 5° and 45° (P < .05). With TFC + VM, ACL force was less than 10 N beyond 5° of flexion, and ATT was reduced at all flexion angles (P < .05). Under the loading conditions TFC + IT and TFC + IT + AF + VM, osteotomy did not significantly change ACL force or ATT at any flexion angle. Conclusion: In general, osteotomy lowered ACL force and reduced ATT when IT was not present. The benefits of osteotomy were negated when IT was included possibly because the dominant mechanism of ACL force generation was cruciate impingement from internal winding and not ATT. Clinical Relevance: PTS-reducing osteotomy significantly decreased ACL force and reduced ATT for knee loads that did not include IT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.