Abstract

Anodic oxidation is the process of creating a titanium oxide layer with various defects more dense and stable. In this study, a dense, stable and porous oxide layer was formed using anodic spark oxidation on pure titanium surface and hydroxyapatite crystals were formed on its surface via a hydrothermal treatment. A mixture of 0.02M−GP (Glycerolphosphate disodium salt) and 0.2M-CA (Calcium acetate) was used as an electrolyte. By increasing the anodizing voltage to 220, 260, 300, and 360 V, the effects of the anodizing voltage were examined by evaluating the film properties after anodization and a hydrothermal treatment. Breakdown occurred around 230 V. As the voltage increased after breakdown, the pore size increased. After the hydrothermal treatment, the amount of HA crystal precipitation was also increased as the voltage increased. The mean surface roughness (Ra) of the anodizing surface was also increased as the voltage increased. The Ra value was larger in the hydrothermally treated group compared with the group treated with anodization as a result of the HA crystals present on the surface after the hydrothermal treatment. Corrosion resistance of the surface modified by anodization was significantly increased in a saline solution compared to that for the non-treated group; this increased further after the hydrothermal treatment. These increases were most likely due to a thick stable oxide layer formed through anodization. Thus, it is believed that titanium with its surface modified through anodic spark oxidation would be a suitable biomaterial due to its corrosion resistance and biocompatibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call