Abstract

AbstractThe plasticity, elastic modulus and thermal stability restrict the applications of electrodeposited nanocrystalline Ni-Fe alloy foils. To improve its mechanical properties, the electrodeposited Ni-Fe alloy foils were heat treated within the temperature 900–1,150 °C. The microstructure and texture of the samples were further analyzed with a combination of SEM, XRD and EBSD. The experimental results indicated that the electrodeposited Ni-Fe alloy foil had poor mechanical properties at about 1,000 °C, which was mainly attributed to the development of a mixed grain microstructure. At 900–950 °C, the plastic and elastic modulus were greatly improved, which were owed to the uniformed microstructure and the decrease of structure defects. At 1,050–1,150 °C, the degree of the mixed grain microstructure decreased, resulting in improved plasticity and higher elastic modulus. However, the strength of the foil obviously decreased, which was mainly associated with the increase of the average grain size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.