Abstract
The purpose of this study was to investigate the analysis of the postural stability and leg stiffness according to the ankle instability types and bilateral legs during drop landing. Methods: Total 14 male athletes (n=7: mechanical ankle instability, n=7: functional ankle instability) Participants in the experiment. The leg stiffness, leg length, peak vertical force, loading rate, as well as the DPSI (medial-lateral [ML], anterior-posterior [AP], vertical [V], dynamic postural stability index) during drop landing were calculated. To analyze the variables measured in this study, SPSS version 21.0 was used to calculate the mean and standard deviation, while a two-way ANOVA was used to evaluate the ankle instability types (MAI, FAI) with landing leg (left: dominant, right: non-dominant leg) results. Dimensionless leg stiffness and change of leg lengths showed increased with significantly in non-dominant leg and MAI type than in dominant leg and FAI type. This resulted from decrease in the leg lengths with leg stiff. MLSI showed increased with significantly in dominant leg than in non-dominant leg during drop landing. Mechanically unstable individuals demonstrated increased leg stiffness, which may increase risk of musculoskeletal. Also, mechanically unstable participants demonstrated greater loading rate variability, which may indicate difficulty mitigating landing forces with lax ligaments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IJASS(International Journal of Applied Sports Sciences)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.