Abstract

A class of exact, anisotropic cosmological solutions to the vacuum Brans-Dicke theory of gravity is considered within the context of the pre-big-bang scenario. Included in this class are the Bianchi type III, V and ${\mathrm{VI}}_{h}$ models and the spatially isotropic, negatively curved Friedmann-Robertson-Walker universe. The effects of large anisotropy and spatial curvature are determined. In contrast with a negatively curved Friedmann-Robertson-Walker model, there exist regions of the parameter space in which the combined effects of curvature and anisotropy prevent the occurrence of inflation. When inflation is possible, the necessary and sufficient conditions for successful pre-big-bang inflation are more stringent than in the isotropic models. The initial state for these models is established and corresponds in general to a gravitational plane wave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.