Abstract

The purpose of this work was to investigate numerically the drying of saturated deformable porous media. The considered sample is a rectangular porous plate which assumed to be both hydro-dynamically and thermally anisotropic, while the mechanical behavior of the sample is supposed to be isotropic. All walls of the plate are subjected to a convective heat flux. Moreover, the top and bottom walls are allowed the mass transfer. The Darcy–Brinkman extended model was used as the momentum balance equation for the liquid and solid phases. The energy balance equation is based on the local thermodynamic equilibrium assumption between the both phases. The lattice Boltzmann method is used to solve the governing differential equation system. A comprehensive analysis of the effect of anisotropy and the drying air parameters on macroscopic fields is investigated throughout this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.