Abstract

We investigated in mice whether atherosclerosis exacerbates the development of post-ischemic heart failure and alters the beneficial effects of long-term angiotensin II type 1 receptor blockade in this model. ApoE-deficient (ApoE(-/-)) and C57BL/6J (C57) mice with myocardial infarction (coronary ligation) received vehicle (C57 and ApoE(-/-)) or irbesartan (Ir, 50mg/kg/d orally, C57-Ir and ApoE(-/-)-Ir). Ten months post myocardial infarction, survival rates were similar in C57 (58%) and ApoE(62%). Atherosclerosis induced no significant alteration in blood pressure, cardiac output (fluospheres), total peripheral resistance, or shortening fraction (echocardiography) but increased renal resistance (+50%, P<0.05). Chronic Ir treatment significantly improved survival to a similar extent in both C57-Ir (85%) and ApoE(-/-)-Ir (86%). It also decreased blood pressure to a similar extent in both strains (-16% and -18%, both P<0.05). In C57-Ir mice, Ir did not modify cardiac output or total peripheral resistance, but it decreased renal resistance (-28%, P<0.001) and left-ventricular weight (-28%, P<0.05). In ApoE(-/-)-Ir mice, Ir limited atherosclerotic lesions (-13%, P<0.05), increased cardiac output (+28%, P<0.05) and shortening fraction (+24%, P<0.05), and decreased total peripheral resistance (-33%, P<0.01), renal resistance (-61%, P<0.001), and left-ventricular weight (-27%, P<0.001). In conclusion, atherosclerosis does not worsen heart failure development in mice and, although the beneficial cardiovascular effects of AT1 receptor blockade are greater in ApoE(-/-) than in C57, reduction in mortality is similar in both strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call