Abstract

Background Daunorubicin is an anthracycline anti-tumor agent; anthracycline chemotherapy in cancer can cause severe cardiomyopathy leading to a frequently fatal congestive heart failure; the first-line treatment is diuretics and digoxin. Recently, angiotensin-converting enzyme inhibitors have been shown to be effective in the treatment of such toxicity. The purpose of this study was to investigate the effects of angiotensin II type-1 receptor antagonist (candesartan) in a rat model of daunorubicin-induced cardiomyopathy. Methods Rats were treated with a cumulative dose of 9 mg/kg body weight daunorubicin (i.v.). 28 days later, after the development of cardiomyopathy, animals were randomly assigned to candesartan-treated (5 mg/kg/day, p.o.) or vehicle-treated groups; age-matched normal rats were used as the control group. Candesartan treatment was continued for 28 days. Hemodynamic and echocardiographic parameters were measured, cardiac protein and mRNA were analyzed, and histopathological analyses of myocardial fibrosis, cell size and apoptosis were conducted. Results Following cardiomyopathy, left ventricular end diastolic pressure and left ventricular systolic dimension were significantly elevated; while % fractional shortening and Doppler E/ A ratio were significantly reduced. Cardiomyopathic hearts showed significant increases in % fibrosis, % apoptosis, and myocyte diameter/body weight ratio; candesartan treatment reversed these changes. Fas-L protein overexpression in myopathic hearts was significantly suppressed by treatment with candesartan. Moreover, SERCA2 mRNA and protein expression were both down-regulated in myopathic hearts and restored to normal by candesartan treatment, significantly. Conclusions Our findings suggest that candesartan treatment significantly improved the left ventricular function and reversed the myocardial pathological changes investigated in this model of daunorubicin-induced cardiomyopathy; suggesting its potentials in limiting daunorubicin cardiotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.