Abstract
The aim is to review the recently reported effects of angiotensin II (Ang II) on sodium and potassium transport in the aldosterone-sensitive distal nephron, including the signaling pathways between receptor and transporter, and the (patho)physiological implications of these findings. Ang II can activate the sodium chloride cotransporter (NCC) through phosphorylation by Ste20-related, proline-alanine rich kinase (SPAK), an effect that is independent of aldosterone but dependent on with no lysine kinase 4 (WNK4). A low-sodium diet (high Ang II) activates NCC, whereas a high-potassium diet (low Ang II) inhibits NCC. NCC activation also contributes to Ang-II-mediated hypertension. Ang II also activates the epithelial sodium channel (ENaC) additively to aldosterone, and this effect appears to be mediated through protein kinase C and superoxide generation by nicotinamide adenine dinucleotide phosphate oxidase. While aldosterone activates the renal outer medullary potassium channel (ROMK), this channel is inhibited by Ang II. The key kinase responsible for this effect is c-Src, which phosphorylates ROMK and leaves WNK4 unphosphorylated to further inhibit ROMK. The effects of Ang II on NCC, ENaC, and ROMK help explain the renal response to hypovolemia which is to conserve both sodium and potassium. Pathophysiologically, Ang-II-induced activation of NCC appears to contribute to salt-sensitive hypertension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.