Abstract

Primary cultures of bovine adrenal medullary cells have been used to study the effects of angiotensin II on catecholamine secretion and inositol phosphate accumulation. Angiotensin II induced a weak secretion of both adrenaline and noradrenaline, with a threshold of 10–100 pM and a shallow concentration-dependence up to 10 μM. The response was fully dependent on extracellular Ca ++, was partially inhibited by 100 nM nifedipine, was completely blocked by [Sar 1, Ala 8]-angiotensin II (IC 50 5–10 nM) and was unaffected by 0.1 mM hexamethonium. Angiotensin II also increased inositol phosphate accumulation over the range 1 pM-10 μM. Inositol trisphosphate levels increased in a biphasic manner after 15 sec and 1 min exposure to 10 nM angiotensin II, but were not significantly increased at 30 sec or 5, 15 or 30 min stimulation. Inositol bisphosphate was significantly increased after 1 min. Inositol monophosphate levels only increased after 1 min stimulation, but continued to rise during 30 min stimulation. Removal of extracellular Ca ++ or addition of EGTA reduced basal inositol phosphate accumulation but not the ability of angiotensin II to stimulate inositol phosphate accumulation relative to basal. Nifedipine (100 nM) had no effect on basal or angiotensin II-induced inositol phosphate accumulation. The inositol phosphate response to angiotensin II was abolished by 1 μM [Sar 1, Ala 8]-angiotensin II. The results suggest that secretion of adrenal medullary catecholamines can be evoked by angiotensin II, at concentrations that are compatible with a role for circulating angiotensin II or for angiotensin II generated locally within the adrenal medulla. They do not support the suggestion that the secretory actions of angiotensin II on chromaffin cells are mediated by mobilization of intracellular Ca ++ stores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.