Abstract

The aim of this study was to compare the systemic hemodynamic effects of four commonly used anesthetic regimens in mice that were chronically instrumented for direct and continuous measurements of cardiac output (CO). Mice (CD-1, Swiss, and C57BL6 strains) were instrumented with a transit-time flow probe placed around the ascending aorta for CO measurement. An arterial catheter was inserted into the aorta 4 or 5 days later for blood pressure measurements. After full recovery, hemodynamic parameters including stroke volume, heart rate, CO, mean arterial pressure (MAP), and total peripheral resistance were measured with animals in the conscious state. General anesthesia was then induced in these mice using isoflurane (Iso), urethane, pentobarbital sodium, or ketamine-xylazine (K-X). The doses and routes of administration of these agents were given as required for general surgical procedures in these animals. Compared with the values obtained for animals in the conscious resting state, MAP and CO decreased during all anesthetic interventions, and hemodynamic effects were smallest for Iso (MAP, -24 +/- 3%; CO, -5 +/- 7%; n = 15 mice) and greatest for K-X (MAP, -51 +/- 6%; CO, -37 +/- 9%; n = 8 mice), respectively. The hemodynamic effects of K-X were fully antagonized by administration of the alpha(2)-receptor antagonist atipamezole (n = 8 mice). These results indicate that the anesthetic Iso has fewer systemic hemodynamic effects in mice than the nonvolatile anesthetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.