Abstract

Worldwide growth of offshore renewable energy production will provide marine organisms with new hard substrate for colonization in terms of artificial reefs. The artificial reef effect is important when planning offshore installations since it can create habitat enhancement. Wind power is the most advanced technology within offshore renewable energy sources and there is an urgent need to study its impacts on the marine environment. To test the hypothesis that offshore wind power increases the abundance of reef species relative to a reference area, we conduct an experiment on the model species common shore crab (Carcinus maenas).Overall, 3962 crabs were captured, observed, marked and released in 2011 and 1995 crabs in 2012. Additionally, carapace size, sex distribution, color morphs and body condition was recorded from captured crabs. We observed very low recapture rates at all sites during both years which made evaluating differences in population sizes very difficult. However, we were able to estimate population densities from the capture record for all three sites. There was no obvious artificial reef effect in the Lillgrund wind farm, but a spill-over effect to nearby habitats cannot be excluded. We could not find any effect of the wind farm on either, morphs, sex distribution or condition of the common shore crab. Our study found no evidence that Lillgrund wind farm has a negative effect on populations of the common shore crab. This study provides the first quantitative and experimental data on the common shore crab in relation to offshore wind farms.

Highlights

  • As the world is trying to make a transition to a lower carbon economy, offshore wind power capacity is expected to grow significantly [1]

  • Our study found no evidence that Lillgrund wind farm has a negative effect on populations of the common shore crab

  • This study provides the first quantitative and experimental data on the common shore crab in relation to offshore wind farms

Read more

Summary

Introduction

As the world is trying to make a transition to a lower carbon economy, offshore wind power capacity is expected to grow significantly [1]. Offshore wind energy has a great resource potential as the wind there is higher and steadier than onshore. By the end of 2015 there were 7748 MW installed and 3198 under construction, compromising 76 wind farms spread over ten European countries [2]. The advantages of renewable energy on a global scale are not in doubt, the effects on the local environment must be carefully considered [3].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call