Abstract

In this work, we consider a Rashba-type quantum channel (RQC) consisting of one AC-biased finger-gates (FG) that orient perpendicularly and located above the RQC. Such an AC-biased FG gives rise to a local time-modulation in the Rashba coupling parameter, and is shown recently to generate a DC spin current [L.Y. Wang, C.S. Tang, C.S. Chu, Cond-mat/0409291, 2004]. No charge current, however, is generated in this configuration. We explore the robustness of such DC spin current generation against elastic scattering in the RQC. The effect of backscattering is studied by introducing a static barrier that is uniform in the transverse dimension. The effects of both backscattering and subband mixing is studied by introducing a static partial-barrier that is spatially localized and non-uniform in the transverse dimension. In addition, we compare the cases of attractive and repulsive partial-barriers. It is found that attractive partial-barrier gives rise to additional DC spin current structures due to resonant inter-subband and inter-sideband transition to quasi-bound states formed just beneath subband thresholds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call