Abstract

The purpose of this study was to assess the effects of dynamic superimposed submaximal whole-body electromyostimulation (WB-EMS) training on maximal strength and power parameters of the leg muscles compared with a similar dynamic training without WB-EMS. Eighteen male sport students were randomly assigned either to a WB-EMS intervention (INT; n = 9; age: 28.8 (SD: 3.0) years; body mass: 80.2 (6.6) kg; strength training experience: 4.6 (2.8) years) or a traditional strength training group (CON; n = 9; age: 22.8 (2.5) years; body mass: 77.6 (9.0) kg; strength training experience: 4.5 (2.9) years). Both training intervention programs were performed twice a week over a period of 8 weeks with the only difference that INT performed all dynamic exercises (e.g., split squats, glute-ham raises, jumps, and tappings) with superimposed WB-EMS. WB-EMS intensity was adjusted to 70% of the individual maximal tolerable pain to ensure dynamic movement. Before (PRE), after (POST) and 2 weeks after the intervention (FU), performance indices were assessed by maximal strength (Fmax) and maximal power (Pmax) testing on the leg extension (LE), leg curl (LC), and leg press (LP) machine as primary endpoints. Additionally, vertical and horizontal jumps and 30 m sprint tests were conducted as secondary endpoints at PRE, POST and FU testing. Significant time effects were observed for strength and power parameters on LE and LC (LE Fmax +5.0%; LC Pmax +13.5%). A significant time × group interaction effect was merely observed for Fmax on the LE where follow-up post hoc testing showed significantly higher improvements in the INT group from PRE to POST and PRE to FU (INT: +7.7%, p < 0.01; CON: +2.1%). These findings indicate that the combination of dynamic exercises and superimposed submaximal WB-EMS seems to be effective in order to improve leg strength and power. However, in young healthy adults the effects of superimposed WB-EMS were similar to the effects of dynamic resistance training without EMS, with the only exception of a significantly greater increase in leg extension Fmax in the WB-EMS group.

Highlights

  • Health-related strength training recommendations regarding intensity, frequency and volume of strength training for maximal strength gains in trained individuals refer to 80–85% of Onerepetition maximum, 2 days per week with a volume of 3–8 sets per muscle group (Peterson et al, 2005)

  • All data are adjusted for baseline differences

  • A significant and large time × group interaction was merely observed for Fmax on the leg extension (LE) (p = 0.029; η2p = 0.21) where post hoc comparisons indicated higher improvements in the INT group from PRE to POST (INT: +6.9%, p < 0.01; CON: +0.5%) and PRE to FU (INT: +7.7%, p < 0.01; CON: +2.1%)

Read more

Summary

Introduction

Health-related strength training recommendations regarding intensity, frequency and volume of strength training for maximal strength gains in trained individuals refer to 80–85% of Onerepetition maximum, 2 days per week with a volume of 3–8 sets per muscle group (Peterson et al, 2005). Appropriate maximal strength and power training is considered crucial for sport-specific physical development in terms of speed, dynamics and injury prevention (Reilly, 2007; Sander et al, 2013). Electromyostimulation (EMS), an training technology for intensifying the training load, is known to be an effective and appealing complementary add-on training method to potentially further improve athletic performance factors (Filipovic et al, 2012). EMS potentially supports the athlete in achieving greater strength and power adaptations by a synchronous recruitment of muscle fibers and an increased firing rate (Gregory and Bickel, 2005)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call