Abstract

BackgroundLoss of sensorimotor stimulation and maladaptive plastic changes of the brain may play a major role in problematic aging phenomena such as frailty. However, it is not clear if interventions specifically targeting neuroplasticity can reverse or slow the development of frailty. ObjectivesWe compared the effect of a tablet-based neuroplasticity-oriented sensorimotor training (experimental group, EG) and a tablet-based relaxation training (control group, CG) on frailty and sensorimotor brain function. MethodsInterventions consisted of daily 30 min sessions distributed over 90 days. Assessments took place at baseline, after 60 days, and after 90 days. A total of N = 48 frail older adults (EG: n = 24; CG: n = 24) were assigned to the two groups and reassessed after 60 days. Primary outcomes included frailty phenotype (FP) and frailty index (FI). Sensorimotor brain activity was evaluated using functional magnetic resonance imaging and single-pulse transcranial magnetic stimulation. ResultsAfter 60 days of training, both groups showed a reduction in the number of FP criteria (p < 0.001) with a trend towards a significant time-by-group interaction (p = 0.058) indicating a stronger reduction of frailty in the EG (p < 0.001) compared to the CG (p = 0.039). In addition, pain was significantly reduced in the EG but not the CG. No significant effects were found for measures of brain function. DiscussionWe provided initial evidence that a neuroplasticity-oriented sensorimotor training could be beneficial in counteracting frailty as well as chronic pain. Further studies are needed to determine the potentially underlying neuroplastic mechanisms and the influence of plasticity-related biomarkers as well as their clinical significance. Trial registrationClinicalTrials.gov NCT03666039 (registered 11 September 2018).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.