Abstract

Amyloid-β (Aβ) peptides are components of senile plaques initiating degeneration of brain neurons in Alzheimer's disease. They increase reactive oxygen species generation that may exceed the defensive capacity of cells. To test the hypothesis, this study investigated the in vivo effects of Aβ peptides on mitochondrial and non-mitochondrial enzymic sources of reactive oxygen species and antioxidant enzymes in rat brain. Continuous intracerebroventricular infusion of both Aβ25–35 and Aβ1–40 for up to 14 days stimulated the hydrogen peroxide (H2O2) generation in isolated neocortex mitochondria. Infusion of Aβ1–40 led to an increase in Mn-superoxide dismutase activity and a decrease in activities of catalase and glutathione peroxidase in mitochondria, to elevation of activities of Cu,Zn-superoxide dismutase and aldehyde oxidase, forwarded the conversion of xanthine dehydrogenase to xanthine oxidase and corresponding increase in the rate of H2O2 formation in the cytosol. Thus, Aβ peptides increase H2O2-formation and H2O2-forming enzyme activities and inhibit H2O2-consuming enzyme activities in mitochondria and cytosol in vivo. These studies suggest that disbalance between H2O2-generating and H2O2-metabolizing enzyme activities can contribute to oxidative stress underlying neurodegeneration and neuronal death in Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.