Abstract

1. In skeletal muscle, catecholamines and calcitonin gene-related peptide (CGRP) increase the content of cAMP, which mediates stimulation of the Na+-K+ pump. Amylin is structurally very similar to CGRP and also increases cAMP in muscle. 2. In isolated rat soleus and extensor digitorum longus muscle, amylin produced a rapid and marked decrease in intracellular Na+, which was maintained for several hours. In soleus, amylin was found to induce a 45 % stimulation of Na+ efflux, a 43 % increase in 86Rb influx and a rise in intracellular K+. All these effects were abolished by ouabain, indicating that amylin produces acute stimulation of the Na+-K+ pump. 3. In contrast, neither the closely related peptides islet amyloid polypeptide (IAPP) and adrenomedullin nor other peptide hormones (C peptide, neuropeptide Y or substance P) produced any detectable change in intracellular Na+ or K+ uptake in soleus. 4. When contractility in soleus was inhibited by increasing extracellular K+ to 12.5 mM, amylin (10-8 M) and insulin (0.7 x 10-8 M) both induced partial recovery of force. These effects were additive, and in combination the two hormones elicited 63 and 80 % recovery of tetanic and twitch force, respectively. Higher concentrations produced even larger increases, and all effects were blocked by ouabain. 5. In buffer containing 12.5 mM K+, dibutyryl cAMP induced 71 % force recovery, which was increased by theophylline. The results indicate that amylin (like catecholamines, cAMP, CGRP and insulin) stimulates the Na+-K+ pump and thereby improves the contractility of depolarized skeletal muscle cells. This adds further support to the concept that the Na+-K+ pump is important for the maintenance of excitability in skeletal muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.