Abstract

The effect of the polyene antibiotic amphotericin B on the permeability of both unilamellar and multilamellar model membranes is investigated. The method measures the loss of the electron paramagnetic resonance signal of a spin probe, trapped in the aqueous compartment of a lipid dispersion, upon addition of ascorbate ions to the bulk aqueous phase. Amphotericin B causes large increases in the permeability of cholesterol-containing egg phosphatidylcholine membranes, whereas the effects are small in the absence of sterol and do not depend on surface charge. The effect of amphotericin depends upon the antibiotic:sterol mole ratio. The antibiotic appears to be unable to cross the membrane, acting only on the outermost bilayer of a multibilayer dispersion. When a phospholipid in the gel phase is used, amphotericin B causes large increases in permeability, independently of the presence or absence of sterol. It is suggested that the mechanism of action of amphotericin B is different for lipids in the liquid crystalline or gel states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.