Abstract

In this study we investigated the interaction of liposomes with rat Kupffer cells in maintenance culture by using the lysosomotropic amines ammonium chloride and chloroquine as inhibitors of intralysosomal degradation. The liposomes (large unilamellar vesicles) contained either the metabolically inert 3H-labeled inulin or the degradable 125I-labeled bovine serum albumin. In control incubations, the cells released nearly all accumulated protein label and about 30% of the lipid label when they were incubated in the absence of liposomes, after an initial uptake period of 1 h in the presence of liposomes. This release of label was, for the greater part, suppressed in the presence of ammonia or chloroquine. When the inhibitors were present during the initial uptake period, a several-fold increase in the amount of protein label accumulating in the cells and a smaller, but still marked, increase in lipid label accumulation were observed. The effect of ammonia when present during uptake was readily reversible in contrast to that of chloroquine. Experiments with encapsulated inulin revealed that both lysosomotropic agents also affected the uptake process per se to some extent, probably as a result of impaired membrane/receptor recycling. Labeled liposomes adsorbed to the cells at 4°C were effectively internalized and processed intracellulary after shifting the temperature to 37°C, even when a 500-fold excess of unlabeled liposomes was present in the medium during the 37°C incubation. The observed effects of ammonia and chloroquine indicate that, after uptake, the liposomes are degraded within lysosomes, thus confirming our previous conclusion that endocytosis is the major uptake mechanism at 37°C. From the temperature-change experiments we conclude that, at 4°C, the liposomes are bound with high affinity to the cells, remaining firmly attached to the cell-surface structures which initiate their internalization when the temperature is raised to 37°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call