Abstract
Ammonia (NH3) co-firing is a promising technology for reducing greenhouse gas emissions in coal-fired power plants. Prior to commercialization, an experimental study on coal–NH3 co-firing in a pilot-scale circulating fluidized bed (CFB) combustion test rig was conducted for technical verification. The comprehensive combustion characteristics, including pollutant emission, combustion efficiency, and ash properties, of NH3 co-firing with sub-bituminous coal in a CFB combustion test rig and the CO2 reduction according to NH3 co-firing ratios under two different injection positions (dense bed zone (DBZ) and wind box (WB) with primary air) were investigated. When NH3 was injected at the DBZ, NO emissions decreased as the NH3 co-firing ratio increased and CO emissions increased more rapidly than with only coal-fired combustion. Compared with only coal-fired combustion, a 25.4% NH3 co-firing ratio at the WB position simultaneously reduced NO and CO concentrations, achieving the highest combustion efficiency without ash-related problems. However, N2O emissions increased by > 1.5 times, indicating the formation of N intermediates during NH3 burning. Therefore, with minor retrofitting, coal–NH3 co-firing at the WB position is a feasible solution for simultaneously reducing CO2, NO, and CO emissions in commercial CFB combustion plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.