Abstract

A mathematical expression has been developed describing the change in thermodynamic free energy for a chemical system as a function of time to aid the interpretation of experimental time-dependent energy curves, such as the open circuit potential (OCP) plots, generated in corrosion studies. Accurate results of chemical potentials and reaction rates, one pair of constants for each causal chemical reaction, were found. Reaction rate constants were determined for OCPs of at room temperature of for oxidation of to and for reduction of to and the known half-cell potentials were reproduced. Experimental aluminum dissolution OCP data was fit using regression analysis describing a four to ten chemical reaction model. The formalism was useful in describing results of OCP plots of integrated circuits (IC) interconnect metals, cleaned by fluoride-based silicon wafer remover formulas, in terms of identifying the causal corrosion chemistry. © 2004 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.