Abstract

Results of the evaporation of a single liquid fuel droplet in various free-stream turbulence intensities and scales are reported. Experiments are carried out at room temperature by using n-heptane and n-decane fuels at Re d =100. A low-speed vertical wind tunnel with different turbulence intensities and scales, controlled by using different sizes of disk, is constructed. The free-stream turbulence intensities are varied in the range from 1% to 60% and the integral length scales are from 2.5 to 20 times of the initial droplet diameter. Results show that the time history of droplet diameter follows the d 2- law in turbulent environments with generally higher evaporation rates as compared with those in quasi-laminar cases. Combined effects of liquid fuel properties and ambient turbulence properties on the evaporation rate can be reasonably well explained by the correlation of normalized evaporation rate with the effective vaporization Damköhler number, Da v.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.