Abstract

The effects of increasing ambient ozone (O3) concentrations on food security has become a major concern as the demand for agricultural productivity is projected to increase significantly over the next several decades. In this contribution, the responses of common soybean genotypes (AK-HARROW, PI88788, DWIGHT, PANA, and WILLIAMS82) to ambient O3 are characterized using hyperspectral data and foliar biophysical, mineral nutrient concentrations and soybean yield. Specifically, leaf reflectance spectra measured at different growth stages and canopy layers were used to examine the spectral indices that were most strongly correlated with leaf physiological status. The effects of elevated O3 on six important nutrients (K, Ca, Mg, Fe, Mn and Cu) were evaluated by analyzing the variations in nutrient concentrations at two critical growth stages with increasing ambient O3 concentration using Partial Least Square Regression (PLSR). Lastly, the identified best spectral indices and the robust nutrient prediction models were extrapolated to the entire growth period to explore their ability to track the effects of ambient O3 concentrations on soybean physiology and nutrient uptake. The results showed that fluorescence yield (ΔF/Fm’) and photochemical quenching (qP) appear to be good indicators of soybean physiological responses to O3 stress that are echoed by the harvest index (HI). Newly identified normalized difference spectral index (NDSI) [R416, R2371] always had the highest correlation (R2 > 0.6) with ΔF/Fm’, qP and electron transport rate (ETR, μmol m−2 s−1) compared to the published indices. Additionally, there were significant and broad spectral regions in visible and near infrared region that were well-correlated with ΔF/Fm’ and selected NDSIs that were applicable to satellite observations. The results of nutrient modeling using PLSR explained 54–87% of the variance in nutrient concentrations, and the predicted mineral nutrient accumulation throughout the growing season reflected the responses of ozone tolerant and sensitive genotypes well. NDSI [R416, R2371] demonstrated great potential in regard to its sensitivity in tracking plant physiological responses to changing ambient O3 concentrations. The outcome of this research has potential implications for development of space-based observation of large-scale crop responses to O3 damage, as well as for biotechnological breeding efforts to improve ozone tolerance under future climate scenarios.

Highlights

  • Lack of water availability as a result of elevated temperature and increases in ambient ozone due to climate changes have been identified as major threats to global food security [1,2]

  • The highest and lowest fluorescence yields were recorded with AK-HARROW and PI88788, respectively, and the same trend was true for the photochemical quenching values of the genotypes

  • The highest yield was obtained from DWIGHT, and the second-highest yield from WILLIAMS82, which was closely followed by AK-HARROW and PANA

Read more

Summary

Introduction

Lack of water availability as a result of elevated temperature and increases in ambient ozone due to climate changes have been identified as major threats to global food security [1,2]. This development is of great socio-economic importance given that global demand for agricultural production is projected to increase by 50% by 2050 [3]. These significant costs to world agriculture are predicted to become even more costly in the several decades with the predicted increase in tropospheric ozone [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call