Abstract
Oxygen toxicity is believed to arise from changes in the rates at which cells generate reactive oxygen species (ROS). Sensitivity to hyperoxia has been postulated to depend on levels of antioxidant defense. Human cells obtained from fetal tissues have lower antioxidant defenses than those obtained from adult tissue. The present study was performed to determine whether the differences in fetal and adult antioxidant defense levels modulated their responses to changes in the ambient oxygen concentration. Our results demonstrate that oxygen modulates the proliferation of human fetal and adult skin fibroblasts in a similar fashion. In general, skin fibroblasts grew better at approximately 31 mm Hg, regardless of donor age. Manganese superoxide dismutase, catalase, and glutathione peroxidase activities were lower in fetal cells than in adult fibroblasts. Copper/zinc superoxide dismutase and glucose-6-phosphate dehydrogenase were similar in fetal and postnatal tissues and were unaltered appreciably by hyperoxic exposure. Glutathione concentration increased at higher oxygen tensions; however, the increase was much greater in fetal cells than in cultures derived from adult skin. These observations demonstrate that the capacity of fetal and adult cells to cope with oxidative stress, while similar, result from distinct mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.