Abstract

This study investigates the effects of ambient atmosphere on electrical characteristics of Al2O3 passivated InGaZnO thin film transistors during positive bias temperature stress. Under H2O vapor environment, the Al2O3 passivated device exhibited stable electrical behaviors (ΔV th < 0.5 V), while the unpassivated device showed an apparent hump effect in the transfer curves under bias stress. The hump phenomenon was attributed to the absorption of the H2O molecule which can serve as a donor to develop a conductive back channel. The experiment results suggest that Al2O3 is an effective passivation layer to suppress water vapor absorption in the InGaZnO back channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.