Abstract

The effects of aluminum substitution to the structural, electrochemical, and gas phase hydrogen storage properties of C14-rich alloys are reported. Minor phases, including C15 and TiNi, were identified by X-ray diffraction analysis. Entropy and enthalpy were estimated from equilibrium pressure at a fixed hydrogen concentration due to the large slope factor in pressure–concentration–temperature isotherms. The stability of hydrides from these materials, determined from the pressure–concentration isotherm equilibrium pressure and maximum storage capacities has a better correlation with the change in entropy than that in enthalpy. Alloys having smaller unit cell volume, relatively low hydride heat of formation, and relatively higher degree of disorder exhibit lower plateau pressure, higher storage capacity, and smaller hydrogen diffusion coefficient. Comparing to the Co substitution in the same base alloy, Al substitution makes better contribution to both bulk hydrogen transport and surface reaction. Substituting 0.4% Al and 1.5% Co to AB2 alloy is found to be the best combination in terms of general nickel metal hydride battery performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.