Abstract

The reaction‐bonded aluminum oxide (RBAO) process is an attractive alternative to the conventional processing of Al2O3‐based ceramics. The most attractive features of the process are the high strengths, densities, and easy machinability of the green powder compacts, and the low shrinkage and high strengths of the sintered ceramics. These advantages result from the presence of aluminum in the green bodies and are enhanced further with increasing aluminum contents. However, it is apparent that ZrO2‐containing RBAO powders with higher aluminum contents (>45 vol%) are increasingly more difficult to densify, as the start of densification is delayed (shifted to higher temperatures) and the densification rates are decreased. Ultimately, this results in a decrease in the limiting density to which the RBAO ceramic may be sintered. In this study, the cooperative effects of ZrO2 and aluminum contents on the sintering of RBAO ceramics are discussed in terms of densification behavior and microstructural analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.