Abstract
In order to investigate if Al resistance in Norway spruce (Picea abies[L.] Karst.) can be attributed to similar exclusion mechanisms as they occur in several crop plants, three-year-old Norway spruce plants were treated for one week in hydroculture with either 500 μM AlCl3 or CaCl2 solutions at pH 4. Sequential root extraction with 1 M NH4Cl and 0.01 M HCl and EDX microanalysis revealed that Al and Ca in cell walls and on the surface participated in exchange processes. About half of the Al extracted by the sequential extraction was not exchangeable by 1 M NH4Cl. Phenolics and phosphate present in the root extracts are possible ligands for Al adsorbed to or precipitated at the root in a non-exchangeable form. In both treatments, C release during the first period of 2 d was much higher than during the remaining time of the experiment. Al treated plants released less total C, carbohydrates and phenolics than did Ca treated plants. Acetate was the only organic acid anion that could be detected in some samples of both treatments. Free amino acids were present at micromolar concentrations but as hydrolysis did not increase their yield, there was no evidence of peptide release. One to two thirds of the released C were large enough not to pass a 1 kDa ultrafilter. The results suggest that exudation of soluble organic complexors is not a major Al tolerance mechanism in Norway spruce, although complexation of Al by phenolic substances released by the root could be detected by fluorescence spectroscopy. Aluminium tolerance could rather be attributed to immobilization in the root apoplast, where strong binding sites are available or precipitation may occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.