Abstract
F1 hybrid New Zealand Black (NZB) x New Zealand White (NZM) (NZB/NZW) mice spontaneously develop an autoimmune disease analogous to systemic lupus erythematosus (SLE). Testosterone experts a powerful suppressive effect on this disorder in adult NZB/NZW mice. A series of experiments was designed to determine if disease would also be suppressed by exposing fetal NZB/NZW mice to increased testosterone. A model was developed in which NZB dams carrying NZB/NZW fetuses were treated with testosterone in a dose adequate to masculinize the external genitalia in female fetuses. NZB/NZW mice that were derived from testosterone-treated dams and control NZB/NZW offspring were followed in a longevity study and had serial assays to assess development of SLE. Additional experiments were carried out to measure lymphocyte subsets and responses to mitogens. Results were compared with F1 hybrid offspring of C57BL/6 dams crossed with DBA/2 males, which are not autoimmune and do not develop SLE. Spleen cells from these groups were tested for Thy 1.2, CD4, CD8, and IgM receptors, and for responses to the mitogens Concanavalin A (ConA) and lipopolysaccharide. Control male NZB/NZW fetuses had unexpectedly high serum estradiol, which decreased significantly with maternal testosterone treatment. The testosterone-exposed male NZB/NZW fetuses developed into adults that lived longer than male NZB/NZW controls. Testosterone treatment of the dam was associated with elevated terminal anti-DNA levels but did not alter markers of renal diseases in adult NZB/NZW mice of either sex. Testosterone-exposed NZB/NZW females had altered T-lymphocyte subsets and testosterone-exposed males had increased response to ConA compared to controls. In male NZB/NZW fetuses whose mothers were administered testosterone, the naturally high level of circulating estradiol observed in untreated male fetuses was decreased significantly. This decrease was associated with an increase in longevity. This unique observation has important implications for fetal exposure to endocrine disruptors in the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.