Abstract

ABSTRACTAt the Savannah River Plant, the reference process for the immobilization of defense high-level waste (DHLW) for geologic storage is vitrification into borosilicate glass. During geologic storage for 106y, the glass would be exposed to ∼3 × 1010 rad of β radiation, ∼1010 rad of γ radiation, and 1018 particles/g glass for both α and α-recoil radiation. This paper discusses tests of the effect of these radiations on the leachability and density of the glass. No effect of the radiations was detected that reduced the effectiveness of the glass for long-term storage of DHLW even at doses corresponding to 106 years storage for the actual glass. For the tests, glass containing simulated DHLW was prepared from frit of the reference composition. Three methods were used to irradiate the glass: external irradiations with beams of ∼200 keV or Pb ions, internal irradiations with Cm–244 doped glass, and external irradiations with Co–60 γ rays. Results with both Xe and Pb ions indicate that a dose of 3 × 1013 ions/cm2 (simulating >106 years storage) does not significantly increase the leachability of the glass in deionized water. Tests with Cm–244 doped glass show no increase in leach rate in deionized water up to a dose of 1.3 × 1018 α and α-recoils/g glass. The density of the Cm–244 doped glass has decreased by 1% at a dose of 1018 particles/g glass. With γ-radiation, the density has changed by <0.05% at a dose of 8.5 × 1010 rad. Results of leach tests in deionized water and brine indicated that this very large dose of γ-radiation increased the leach rate by only 20%. Also, the leach rates are 3 to 4 times lower in brine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.