Abstract

GaN epilayers on AlN buffer layers with various thicknesses were grown on sapphire substrates by using plasma-assisted molecular-beam epitaxy. The GaN epilayer with an AlN buffer layer was much smaller than the GaN epilayer without an AlN buffer layer. The crystal quality of the GaN active layer was improved by utilizing an AlN layer, which acted as a nucleation layer. The reduced defect density promoted GaN coalition. The double-crystal rocking curves and the photoluminescence spectra showed that the GaN epilayer grown on a 4-nm AlN buffer layer had the best quality among the several kinds of samples. The photoluminescence intensity of the GaN epilayer which is related to the density of the crystal defects was lower when an AlN buffer layer was used the thin AlN nucleation layer protected against stain propagation. These results indicate that GaN epilayers grown on AIN buffer layers hold promise for applications in short-wavelength optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.