Abstract
In this study, effects of alloying elements on the sticking behavior occurring during hot rolling of five kinds of modified ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior. Hot-rolling simulation tests were conducted by a high-temperature wear tester that could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased while the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five steels was evaluated by considering both high-temperature hardness and oxidation. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not make much difference to the sticking. Particularly, in the Si-rich steel, Si oxides formed first in the initial stage of the high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus, decreased the sticking by over 10 times in comparison with the other steels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.