Abstract

Thermal barrier coatings (TBCs) provide an alloy surface temperature reduction when applied to turbine component surfaces. Thermal barrier coatings can be used as a tool for the designer to augment the power and/or enhance the efficiency of gas turbine engines. TBCs have been used successfully in the aerospace industry for many years, with only limited use for industrial gas turbine applications. Industrial gas turbines operate for substantially longer cycles and time between overhauls, and thus endurance becomes a critical factor. There are many factors that affect the life of a TBC including the composition and microstructure of the base alloy and bond coating. Alloys such as Mar-M 247, CMSX-4 and CMSX-10 are materials used for high temperature turbine environments, and usually require protective and/or thermal barrier coatings for increased performance. Elements such as hafnium, rhenium, and yttrium have shown considerable improvements in the strength of these alloys. However these elements may result in varying effects on the coatability and environmental performance of these alloys. This paper discusses the effects of these elements on the performance of thermal barrier coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.